数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力。 数据处理的质量对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练, 更会提高模型性能。为解决这一问题,PyTorch提供了几个高效便捷的工具, 以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载。
【说明】本文使用的cat-dog数据集,请到书《Python深度学习基于PyTorch》下载代码及数据部分下载。
数据集存放大致有以下两种方式:
(1)所有数据集放在一个目录下,文件名上附有标签名,数据集存放格式如下: root/cat_dog/cat.01.jpg
root/cat_dog/cat.02.jpg
........................
root/cat_dog/dog.01.jpg
root/cat_dog/dog.02.jpg
......................
(2)不同类别的数据集放在不同目录下,目录名就是标签,数据集存放格式如下:
root/ants/xxx.png
root/ants/xxy.jpeg
root/ants/xxz.png
................
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png
..................

1.1 对第1种数据集的处理步骤

(1)生成包含各文件名的列表(List)
(2)定义Dataset的一个子类,该子类需要继承Dataset类,查看Dataset类的源码
(3)重写父类Dataset中的两个魔法方法: 一个是: __lent__(self),其功能是len(Dataset),返回Dataset的样本数。 另一个是__getitem__(self,index),其功能假设索引为i,使Dataset[i]返回第i个样本。
(4)使用torch.utils.data.DataLoader加载数据集Dataset.

1.2 实例详解

以下以cat-dog数据集为例,说明如何实现自定义数据集的加载。

1.2.1 数据集结构

所有数据集在cat-dog目录下:
.\cat_dog\cat.01.jpg
.\cat_dog\cat.02.jpg
.\cat_dog\cat.03.jpg
....................
.\cat_dog\dog.01.jpg
.\cat_dog\dog.02.jpg
....................

1.2.2 导入需要用到的模块

1.2.3定义加载自定义数据的类

1.2.4 实例化类

<class 'PIL.Image.Image'>

1.2.5 查看图像形状

img的形状(500, 374),label的值0
img的形状(300, 280),label的值0
img的形状(489, 499),label的值0
img的形状(431, 410),label的值0
img的形状(300, 224),label的值0

从上面返回样本的形状来看:
(1)每张图片的大小不一样,如果需要取batch训练的神经网络来说很不友好。
(2)返回样本的数值较大,未归一化至[-1, 1]
为此需要对img进行转换,如何转换?只要使用torchvision中的transforms即可

1.2.6 对图像数据进行处理

这里使用torchvision中的transforms模块

1.2.7查看处理后的数据

图像img的形状torch.Size([3, 224, 224]),标签label的值0
图像数据预处理后:
tensor([[[ 0.9059, 0.9137, 0.9137, ..., 0.9451, 0.9451, 0.9451],
[ 0.9059, 0.9137, 0.9137, ..., 0.9451, 0.9451, 0.9451],
[ 0.9059, 0.9137, 0.9137, ..., 0.9529, 0.9529, 0.9529],
...,
[-0.4824, -0.5294, -0.5373, ..., -0.9216, -0.9294, -0.9451],
[-0.4980, -0.5529, -0.5608, ..., -0.9294, -0.9373, -0.9529],
[-0.4980, -0.5529, -0.5686, ..., -0.9529, -0.9608, -0.9608]],

[[ 0.5686, 0.5765, 0.5765, ..., 0.7961, 0.7882, 0.7882],
[ 0.5686, 0.5765, 0.5765, ..., 0.7961, 0.7882, 0.7882],
[ 0.5686, 0.5765, 0.5765, ..., 0.8039, 0.7961, 0.7961],
...,
[-0.6078, -0.6471, -0.6549, ..., -0.9137, -0.9216, -0.9373],
[-0.6157, -0.6706, -0.6784, ..., -0.9216, -0.9294, -0.9451],
[-0.6157, -0.6706, -0.6863, ..., -0.9451, -0.9529, -0.9529]],

[[-0.0510, -0.0431, -0.0431, ..., 0.2078, 0.2157, 0.2157],
[-0.0510, -0.0431, -0.0431, ..., 0.2078, 0.2157, 0.2157],
[-0.0510, -0.0431, -0.0431, ..., 0.2157, 0.2235, 0.2235],
...,
[-0.9529, -0.9843, -0.9922, ..., -0.9529, -0.9608, -0.9765],
[-0.9686, -0.9922, -1.0000, ..., -0.9608, -0.9686, -0.9843],
[-0.9686, -0.9922, -1.0000, ..., -0.9843, -0.9922, -0.9922]]])

由此可知,数据已标准化、规范化。

1.2.8对数据集进行批量加载

使用DataLoader模块,对数据集dataset进行批量加载

torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([4, 3, 224, 224]) torch.Size([4])
torch.Size([2, 3, 224, 224]) torch.Size([2])

1.2.9随机查看一个批次的图像

2 对第2种数据集的处理

处理这种情况比较简单,可分为2步:
(1)使用datasets.ImageFolder读取、处理图像。
(2)使用.data.DataLoader批量加载数据集,示例如下: